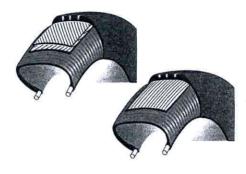


CONSTRUCTION RADIALE

Il existe trois types de construction distinctes : Diagonal («-»), Diagonal ceinturé («B») et Radial

Structure diagonale ou conventionnelle : La carcasse est formée de plis superposés et croisés allant d'une tringle à l'autre.



Structure diagonale ceinturée ou bias belted : La carcasse est formée de plis superposés et croisés allant d'une tringle à l'autre, ceinturée par des nappes sommet croisées.

CONSTRUCTION RADIALE

Cette structure est composée d'une nappe carcasse formée d'arceaux perpendiculaires au sens de rotation, ceinturée de nappes sommet croisées et/ou d'une nappe sommet à 0°.

PANACHAGE RADIAL / DIAGONAL

Une compatibilité de type entre le pneu avant et le pneu arrière doit être respectée afin d'éviter les phénomènes d'instabilité de la moto.

Généralement, on conserve le même type de construction pour les pneus avant et arrière (sauf dans le cas de certains TRAIL de 600 à 900 cc pour lesquels la monte usuelle est Diagonale à l'avant et Radiale à l'arrière).

Travaux de Normalisation des Pneumatiques pour la

PNEUMATIQUES MOTOS

DUNLOP

METZELER *


INFORMATIONS SUPPLÉMENTAIRES

MISE EN TEMPÉRATURE

A chaque utilisation de la moto, il est nécessaire de parcourir quelques kilomètres à vitesse modérée afin d'amener les pneus à température de fonctionnement et leur procurer ainsi une adhérence optimale.

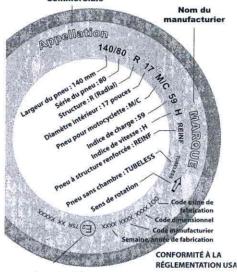
COMPORTEMENT LIÉ AUX ACCESSOIRES

Certains accessoires (sacoches, coffres arrières,...) peuvent détériorer la stabilité à moyenne et à haute vitesse (phénomène de louvoiement....).

Le louvoiement est un mouvement ondulatoire, d'amplitude variable, intervenant en ligne droite ou en courbe et pouvant débuter dès 130 km/h.

Travaux de Normalisation des Pneumatiques pour la France

60 rue Auber 94408 VITRY-SUR-SEINE CEDEX Tél : +33 (0) 1 46 70 84 46 - Fax : +33 (0) 1 45 21 03 50 www.tnpf.fr


Edition 2006

12

MARQUAGES

Appellation

CONFORMITÉ À LA RÉGLEMENTATION EUROPÉENNE

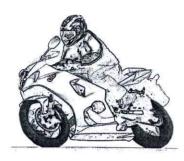
Série du pneu H/S=80

H Hauteur du pneu S Largeur Boudin

TNPF

INDICES DE CHARGE ET VITESSE

Les pneumatiques comportent des conditions d'utilisation comme les indices de charge (nombre) associés aux symboles de vitesse (lettre) qui sont ses performances maximales.


Indices de charge (Charge exprimée en kg par pneu)								
indice	charge	indice	charge	indice	charge	indice	charge	
30	106	46	170	62	265	78	425	
31	109	47	175	63	272	79	437	
32	112	48	180	64	280	80	450	
33	115	49	185	65	290	81	462	
34	118	50	190	66	300	82	475	
35	121	51	195	67	307	83	487	
36	125	52	200	68	315	84	500	
37	128	53	206	69	325	85	515	
38	132	54	212	70	335	86	530	
39	136	55	218	71	345	87	545	
40	140	56	224	72	355	88	560	
41	145	57	230	73	365	89	580	
42	150	58	236	74	375	90	600	
43	155	59	243	75	387	-		
44	160	60	250	76	400			
45	165	61	257	77	412			

Indices de vitesse							
Symboles de vitesse		Symboles de vitesse	Vitesse (km/h)				
J	100	T	190				
K	110	U	200				
L	120	н	210				
M	130	V	240				
· N	140	* (V)	> 240				
Р	150	w	270				
Q	160	* (W)	> 270				
R	170	en toute rigueur					
S	180	(73 W) et non (W) seu					

Correspondances dimensionnelles mm/pouce (pneus diagonaux)				
millimètres	pouces			
80/80	2.75			
80/90	2.75 - 3.00			
90/90	3.00 - 3.25 - 3.6			
100/90	3.50 - 4.10			
110/90	4.00 - 4.10 - 4.6			
120/80	4.25 - 4.50 - 4.6			
120/90	4.25 - 4.50			
130/80	4.50 - 4.60 - 5.1			
130/90	4.50 - 4.60 - 5.1			
140/80	4.50 - 5.10 - 5.5			
140/90	5.10 - 5.50			

8

Produit complexe de haute technologie, le pneumatique constitue le seul point de liaison du véhicule avec le sol.

C'est ce contact dont la surface est équivalente, par exemple pour une moto sportive, à celle d'une carte de crédit, qui permet au pneu de remplir ses multiples fonctions : rouler, guider, porter la charge, transmettre, amortir, durer....

Pour exploiter au mieux toutes les qualités de vos pneumatiques, il est donc indispensable, pour le motard, de prendre certaines précautions résumées dans ce fascicule.

Elles vous permettront d'obtenir non seulement le meilleur rendement possible de vos pneus, mais surtout un usage en toute sécurité.

GONFLAGE

Un gonflage correct est essentiel pour la sécurité, le confort et la longévité des pneumatiques.

Le respect des pressions de gonflage préconisées par les constructeurs contribue largement au bon comportement du véhicule. C'est un facteur important de la tenue de route en ligne droite et en virage, même à vitesse modérée et lors des freinages.

Un pneu perd progressivement de l'air. Il est raisonnable de contrôler sa pression tous les 15 jours à «froid».

Si la vérification des pressions s'effectue en cours de route, elle se fait sur «pneus chauds». Or au roulage la pression augmente. Il ne faut donc jamais dégonfler un pneu qui vient de rouler. En cas de pression inférieure à la pression préconisée, il est indispensable de faire l'appoint.

Il faut considérer que, pour être correcte, la pression peut être supérieure de 0,3 bar à celle préconisée à froid.

Après contrôle, ne pas oublier de remettre le bouchon de valve qui assure l'étanchéité en complément de l'obus de valve.

CONTRÔLE

Les pneumatiques doivent être examinés régulièrement car leur forme d'usure peu traduire un gonflage incorrect, une surcharge ou un mauvais réglage mécanique.

Un pneumatique ayant été utilisé en sous gonflage ou en surcharge prolongés, peu présenter des dégradations irréversibles susceptibles d'avoir des conséquences graves, même si le pneu a été ramené par la suite à une pression de gonflage correcte.

II est conseillé de vérifier régulièrement les pneumatiques en apportan un soin particulier à l'examen :

- de la bande de roulement pour déceler la présence de corps étrangers, de

coupures, de détériorations localisées ou d'usures irrégulières ;

- des flancs pour détecter les blessures pa chocs (trottoir, nid de poule,....), les coupures, les craquelures ou les déformations anormales ;
- de la zone d'accrochage jante/talon pou constater des traces de frottements ou de détérioration de la jante.

En cas de doute, une vérification interne et externe du pneumatique par un spécialiste s'impose dans les meilleurs délais.

2

3

USURE

La bande de roulement assure en grande partie l'adhérence du pneu à la route. Au fur et à mesure de l'usure, sa capacité à évacuer l'eau diminue : il faut donc réduire sa vitesse sur sol mouillé.

Penser a contrôler régulièrement l'usure des pneumatiques : vérifier visuellement l'épaisseur de gomme de la bande de roulement et l'uniformité

Les facteurs d'usure : le kilométrage final d'un pneumatique dépend de 7 facteurs majeurs :

- certains sont directement maîtrisables par le motard : pression de gonflage, charge transportée, vitesse du véhicule, style de conduite (freinages et accélérations) - certains ne sont pas maîtrisables et imposent une adaptation de la conduite : sinuosité de la route, type de revêtement, température ambiante.

Ne pas oublier que des défauts mécaniques provoquent également une usure de la bande de roulement (roues voilées, amortisseurs usagés, jeux de la colonne de direction, mauvais alignement cadre-roue,...).

Un seul facteur peut avoir une influence non négligeable sur ce rendement kilométrique ; si plusieurs facteurs se cumulent, l'usure sera beaucoup plus importante.

REMPLACEMENT

Les opérations de démontage, montage, puis d'équilibrage sont l'affaire d'un professionnel : une mauvaise opération sur le pneu peut le détériorer et mettre en cause votre sécurité.

Lors du remplacement d'un pneumatique, on doit s'assurer des points suivants :

- maintien de la dimension d'origine,

conformité des indices de charge et vitesse, pour certains modèles, respect de la monte spécifique préconisée par le constructeur.

En cas de doute, se référer aux indications du manuel utilisateur, aux catalogues d'équipements des Manufacturiers de Pneumatiques ou demander conseils aux concessionnaires de la marque.

Il est recommandé de changer la valve avec son bouchon à chaque intervention sur le pneu, car elle constitue un élément essentiel d'étanchéité.

La législation n'autorise pas l'utilisation routière de pneus slick et/ou retaillés ou de pneus marqués NHS (Not for Highway Service) ou «FOR COMPETITION PURPOSE ONLY» ou «FOR RACING PURPOSE ONLY».

Une période de rodage avec prise d'angle progressive d'une centaine de kilomètres, à vitesse modérée, est nécessaire avant d'atteindre les performances optimales du pneumatique.

TUBE TYPE (TT) pneu avec chambre à air

Il est recommandé d'utiliser une chambre à air neuve lors de chaque montage / démontage du pneu sur la jante.

Il est conseillé de vérifier le bon état et le bon positionnement du protecteur de fond de jante pour éviter une crevaison (têtes de rayons).

TUBELESS (TL) pneu sans chambre à air

Le montage d'une chambre à air dans un pneu tubeless, sur une jante tubeless, est fortement déconseillé.

Une jante tubeless (étanche) doit être toujours associée à un pneu tubeless.

RÉPARATION

En cas de crevaison, seul un spécialiste saura effectuer les examens internes et externes nécessaires et décider de l'éventuelle réparation du pneumatique.

DÉPANNAGE **DE SECOURS**

L'utilisation d'une bombe anti-crevaison doit être considérée comme un moyen de dépannage permettant de rejoindre, à une vitesse modérée, un spécialiste du pneumatique moto.